We propose a novel multi-task method for quantile forecasting with shared Linear layers. Our method is based on the Implicit quantile learning approach, where samples from the Uniform distribution $\mathcal{U}(0, 1)$ are reparameterized to quantile values of the target distribution. We combine the implicit quantile and input time series representations to directly forecast multiple quantile estimations for multiple horizons jointly. Prior works have adopted a Linear layer for the direct estimation of all forecasting horizons in a multi-task learning setup. We show that following similar intuition from multi-task learning to exploit correlations among forecast horizons, we can model multiple quantile estimates as auxiliary tasks for each of the forecast horizon to improve forecast accuracy across the quantile estimates compared to modeling only a single quantile estimate. We show learning auxiliary quantile tasks leads to state-of-the-art performance on deterministic forecasting benchmarks concerning the main-task of forecasting the 50$^{th}$ percentile estimate.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
市场需求紧迫,以最大程度地减少迅速伽马中子激活分析(PGNAA)光谱测量机的测试时间,以便它可以充当即时材料分析仪,例如立即对废物样品进行分类,并根据测试样品的检测成分确定最佳的回收方法。本文介绍了深度学习分类的新开发,并旨在减少PGNAA机器的测试时间。我们提出随机采样方法和类激活图(CAM)以生成“缩小”样品并连续训练CNN模型。随机采样方法(RSM)旨在减少样品中的测量时间,而类激活图(CAM)用于滤除缩小样品的不太重要的能量范围。我们将总PGNAA测量时间缩短到2.5秒,同时确保我们的数据集的精度约为96.88%,该数据集使用12种不同的物质。与分类不同的材料分类相比,具有相同元素以归档良好精度的物质需要更多的测试时间(样品计数率)。例如,铜合金的分类需要将近24秒的测试时间才能达到98%的精度。
translated by 谷歌翻译
对于环境,可持续的经济和政治原因,回收过程变得越来越重要,旨在更高的二级原材料使用。目前,对于铜和铝业,没有用于非均匀材料的非破坏性在线分析的方法。PROMP GAMMA中子激活分析(PGNAA)具有克服这一挑战的潜力。由于短期测量,使用PGNAA进行实时分类时的困难是少量嘈杂的数据。在这种情况下,使用峰值分析使用详细峰的经典评估方法失败。因此,我们建议将光谱数据视为概率分布。然后,我们可以使用最大对数可能相对于内核密度估计来对材料进行分类,并使用离散抽样来优化超参数。对于纯铝合金的测量,我们将在0.25秒以下的铝合金几乎分类。
translated by 谷歌翻译
Visual Analytics社区已提出了几种用户建模算法,以捕获和分析用户的交互行为,以帮助用户进行数据探索和洞察力生成。例如,有些人可以检测勘探偏见,而另一些人可以预测用户在进行交互之前将与用户进行交互的数据点。研究人员认为,这种算法收集可以帮助创建更智能的视觉分析工具。但是,社区缺乏对这些现有技术的严格评估和比较。结果,关于使用哪种方法以及何时使用的指导有限。我们的论文旨在通过比较和对八种用户建模算法进行比较并根据其在四个用户研究数据集的多样化的性能进行比较和排名的差距来填补这一缺失的空白。我们分析了探索偏差检测,数据相互作用预测和算法复杂性等措施。根据我们的发现,我们重点介绍了分析用户互动和可视化出处的新方向。
translated by 谷歌翻译
由于对不同部门的电子芯片的需求不断增长,因此,半导体公司被授权离岸其制造流程。这一不必要的事情使他们对筹码的筹码有关,并引起了硬件攻击的创造。在这种情况下,半导体供应链中的不同实体可以恶意行事,并对从设备到系统的设计计算层进行攻击。我们的攻击是一个硬件特洛伊木马,在不受信任的铸造厂中插入了在面具的生成/制造过程中。特洛伊木马在制造,通过添加,删除或设计单元的变化中留下了脚印。为了解决这个问题,我们在这项工作中提出了可解释的视觉系统,用于硬件测试和保证(EVHA),可以检测以低成本,准确和快速的方式对设计的最小变化。该系统的输入是从正在检查的集成电路(IC)中获取的扫描电子显微镜(SEM)图像。系统输出是通过添加,删除或在单元格级的设计单元格中使用任何缺陷和/或硬件木马来确定IC状态。本文概述了我们的防御系统的设计,开发,实施和分析。
translated by 谷歌翻译
联合学习(FL)是一种新兴的范式,可实现对机器学习模型的大规模分布培训,同时仍提供隐私保证。在这项工作中,我们在将联合优化扩展到大节点计数时共同解决了两个主要的实际挑战:中央权威和单个计算节点之间紧密同步的需求以及中央服务器和客户端之间的传输成本较大。具体而言,我们提出了经典联合平均(FedAvg)算法的新变体,该算法支持异步通信和通信压缩。我们提供了一种新的分析技术,该技术表明,尽管有这些系统放松,但在合理的参数设置下,我们的算法基本上与FedAvg的最著名界限相匹配。在实验方面,我们表明我们的算法确保标准联合任务的快速实用收敛。
translated by 谷歌翻译
在智能辅导系统中生成提示的现有工作(ITS)主要集中在手动和非个人反馈上。在这项工作中,我们探索了ITS中的个性化反馈作为个性化反馈。我们的个性化反馈可以在学生答案中查明正确,错误或缺失的短语,并通过提出自然语言问题来指导他们正确答案。我们的方法结合了因果分析,以使用基于文本相似性的NLP变压器模型来分解学生答案,以识别正确和不正确或缺失的零件。我们培训了一些弹药的神经问题生成和问题重新排序模型,以显示解决学生答案中缺少的组件的问题,这些组件使学生朝着正确的答案迈进。在基于真实对话的ITS测试时,我们的模型在学生学习的增长方面大大优于简单和强大的基线。最后,我们表明我们个性化的纠正反馈系统有可能改善生成的问答系统。
translated by 谷歌翻译
智能杂草系统为了执行植物特定的运营,可以有助于农业和环境的可持续性。尽管近年来对精密杂草管理的自主机器人技术造成巨大进展,但尚未实现在领域的底盖内的工作。这种系统的先决条件是可靠的检测和杂草的分类,以避免错误地喷涂,从而损坏周围的植物。实时多级杂草鉴定使特异性的杂草治疗能够显着降低除草剂的使用量。在这里,我们的第一个贡献是第一个充分的大型现实图像数据集\ texit {aiweeds}(一个图像中的一个/多种杂草),一个约10,000个亚麻的注释图像,以及在田间和花园中最常见的14个杂草从北达科他州,加利福尼亚州和中国中部的20个不同的地方取自20个不同的地方。其次,我们提供了一个完整的管道,从模型培训,最大效率将规则解优化模型部署到单板计算机上。基于\ Texit {Aiweeds}和管道,我们使用五个基准CNN模型提出了一种分类性能的基线。其中,MobileNetv2具有最短的推理时间和最低记忆消耗,是实时应用程序的合格候选者。最后,我们将MobileNetv2部署到我们自己的紧凑型自主机器人\ Textit {Sambot}以进行实时杂草检测。在亚麻领域的先前看不见的场景中实现了90 \%测试精度(具有0.2-0.3米的行间距,杂草和杂草,失真,模糊和阴影,是真实世界中精确杂草控制的里程碑。我们公开发布了DataSet和代码以生成\ URL {https://github.com/structurescomp/multi-class-weed-classification}。
translated by 谷歌翻译
我们探索粒状介质(GM)中软机器的运动,由细长杆的弹性变形产生。提出了由细菌的生理结构的低成本,迅速制造的机器人。它由刚性头部,带有电动机和电池的嵌入式和电池,以及多个弹性杆(我们的灯泡模型)来调查通用汽车的运动。弹性鞭毛在电机一端旋转,它们由于从GM的拖动而变形,推动机器人。外部拖动由鞭毛形状决定,而后者由于外部负载和弹力之间的竞争而改变。在该耦合的流体结构相互作用问题中,我们观察到增加鞭毛的数量可以减小或增加机器人的推进速度,这取决于系统的物理参数。这种简单机器人之间的功能关系中的这种非线性激励我们利用理论,数值模拟和实验来从根本上分析其力学。我们提出了一个简单的欧拉伯努利光束理论的分析框架,其能够定性地捕获这两种情况。当鞭毛变形小时,理论预测定量匹配实验。为了考虑经常在软机器人和微生物中遇到的几何非线性变形,我们实施了一种仿真框架,该框架包括弹性杆的离散微分几何形状模拟,这是一种基于电阻理论的拖曳模型,以及用于流体动力学的改进的斯托克斯法机器人头。与实验数据的比较表明模拟可以定量地预测机器人运动。总的来说,本文中提出的理论和数值工具可以在粒状或流体介质中的这类清晰的机器人的设计和控制来阐明。
translated by 谷歌翻译